Towards a Robust Imprecise Linear Deconvolution

نویسندگان

  • Olivier Strauss
  • Agnès Rico
چکیده

Deconvolution consists of reconstructing a signal from blurred (and usually noisy) sensory observations. It requires perfect knowledge of the impulse response of the sensor. Relevant works in the litterature propose methods with improved precision and robustness. But those methods are not able to account for a partial knowledge of the impulse response of the sensor. In this article, we experimentally show that inverting a Choquet capacity-based model of an imprecise knowledge of this impulse response allows to robustly recover the measured signal. The method we use is an interval valued extension of the well known Schultz procedure.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Non-discretionary imprecise data in efficiency Measurement

This paper introduces discretionary imprecise data in Data Envelopment Analysis (DEA) and discusses the efficiency evaluation of Decision Making Units (DMUs) with non-discretionary imprecise data. Then, suggests a method for evaluation the efficiency of DMUs with non-discretionary imprecise data. When some inputs and outputs are imprecise and non-discretionary, the DEA model becomes non-linear ...

متن کامل

Robust L∞-induced deconvolution filtering for linear stochastic systems and its application to fault reconstruction

The problem of stationary robust L -induced deconvolution filtering for the uncertain continuous-time linear stochastic systems is addressed. The state space model of the system contains stateand input-dependent noise and deterministic parameter uncertainties residing in a given polytope. In the presence of input-dependent noise, we extend the derived lemma in Berman and Shaked (2010) character...

متن کامل

An Exact Algorithm for Likelihood-Based Imprecise Regression in the Case of Simple Linear Regression with Interval Data

Likelihood-based Imprecise Regression (LIR) is a recently introduced approach to regression with imprecise data. Here we consider a robust regression method derived from the general LIR approach and we establish an exact algorithm to determine the set-valued result of the LIR analysis in the special case of simple linear regression with interval data.

متن کامل

Fast and Robust linear motion deblurring

We investigate efficient algorithmic realisations for robust deconvolution of grey-value images with known space-invariant point-spread function, with emphasis on 1D motion blur scenarios. The goal is to make deconvolution suitable as preprocessing step in automated image processing environments with tight time constraints. Candidate deconvolution methods are selected for their restoration qual...

متن کامل

Robust Optimization for Multiobjective Programming Problems with Imprecise Information

A robust optimization approach is proposed for generating nondominated robust solutions for multiobjective linear programming problems with imprecise coefficients in the objective functions and constraints. Robust optimization is used in dealing with impreciseness while an interactive procedure is used in eliciting preference information from the decision maker and in making tradeoffs among the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012